Autotagger: A Model For Predicting Social Tags from Acoustic Features on Large Music Databases
نویسندگان
چکیده
Social tags are user-generated keywords associated with some resource on the Web. In the case of music, social tags have become an important component of “Web 2.0” recommender systems, allowing users to generate playlists based on use-dependent terms such as chill or jogging that have been applied to particular songs. In this paper, we propose a method for predicting these social tags directly from MP3 files. Using a set of 360 classifiers trained using the online ensemble learning algorithm FilterBoost, we map audio features onto social tags collected from the Web. The resulting automatic tags (or autotags) furnish information about music that is otherwise untagged or poorly tagged, allowing for insertion of previously unheard music into a social recommender. This avoids the “cold-start problem” common in such systems. Autotags can also be used to smooth the tag space from which similarities and recommendations are made by providing a set of comparable baseline tags for all tracks in a recommender system. Because the words we learn are the same as those used by people who label their music collections, it is easy to integrate our predictions into existing similarity and prediction methods based on web data.
منابع مشابه
The Role of Audio and Tags in Music Mood Prediction: A Study Using Semantic Layer Projection
Semantic Layer Projection (SLP) is a method for automatically annotating music tracks according to expressed mood based on audio. We evaluate this method by comparing it to a system that infers the mood of a given track using associated tags only. SLP differs from conventional auto-tagging algorithms in that it maps audio features to a low-dimensional semantic layer congruent with the circumple...
متن کاملAutotagging Music Using Supervised Machine Learning
Social tags are an important component of “Web2.0” music recommendation websites. In this paper we propose a method for predicting social tags using audio features and supervised learning. These automatically-generated tags (or “autotags”) can furnish information about music that is untagged or poorly tagged. The tags can also serve to smooth the tag space from which similarities and recommenda...
متن کاملAutomatic Generation of Social Tags for Music Recommendation
Social tags are user-generated keywords associated with some resource on the Web. In the case of music, social tags have become an important component of “Web2.0” recommender systems, allowing users to generate playlists based on use-dependent terms such as chill or jogging that have been applied to particular songs. In this paper, we propose a method for predicting these social tags directly f...
متن کاملLearning the Similarity of Audio Music in Bag-of-frames Representation from Tagged Music Data
Due to the cold-start problem, measuring the similarity between two pieces of audio music based on their low-level acoustic features is critical to many Music Information Retrieval (MIR) systems. In this paper, we apply the bag-offrames (BOF) approach to represent low-level acoustic features of a song and exploit music tags to help improve the performance of the audio-based music similarity com...
متن کاملCNN based music emotion classification
Music emotion recognition (MER) is usually regarded as a multi-label tagging task, and each segment of music can inspire specific emotion tags. Most researchers extract acoustic features from music and explore the relations between these features and their corresponding emotion tags. Considering the inconsistency of emotions inspired by the same music segment for human beings, seeking for the k...
متن کامل